
Object Storage and
IO Amplification

QR Code to Download this Presentation

Object Storage and
IO Amplification

Part 1 – The Anatomy of an S3 Server

An Example S3 Server – MinIO

• We are going to use a MinIO configuration as our “example” S3 server.

• Other servers exist, but MinIO is popular, and pretty easy to analyze.

• Our MinIO Configuration

• 16 nodes:

• 12 20TB HDDs per node

• 192 total disks

• 3.8 PB raw capacity

• 2.8 PB usable capacity

• 12+4 erasure code config

• XFS

MinIO IO Amplification

• Every S3 “GET” requires:

• 12 object retrievals from 12 HDDs on 12 nodes

• Every “node get” requires:

• One directory lookup (for the bucket)

• One file read for the object control record

• Additional file reads depending on the size of the object

• So we are at 12 x (1 + 1 + 1) “directory searches” for every object hit.

File System IO Amplification

• XFS is good or terrible, depending on

directory size.

• Very big directories should be

avoided.

• MinIO does not have any control over

bucket object count.

Directory
size

IO
count

KBs
read

IO
Amp

Read
Latency

(ms)

10 2 32 2.0 31

100 4 52 3.2 35

1,000 6 60 3.7 29

10,000 6 60 3.7 36

100,000 7 64 4.0 38

1,000,000 25 136 8.5 157

10,000,000 193 808 50.5 1,616

100,000,000 1,684 6,772 523.2 13,544

Total IO Amplification can get really
bad.
• For buckets with large numbers of objects:

• 100M objects – 16KB – 1.6 TB

• x 16 x 2 files = 3.2B files

• across 192 disks (16 nodes x 12) = 16.7M files per disk

• XFS tests at 193 IOs to read a file from a 10M file directory

• Allowing for “some” caching, use 100 IOs for this example.

Total IO amplification can get really
bad.
• @ 100 IOs to get an object from a target disk

• @ 12 disks needed to assemble an object

• 100 x 12 = 1200 “IOs” needed to get an object

• 192 disks @ 200 IOPS “available” = 38,400 IOs available

• 38,400 / 1200 = 32 Object GETs per second for the entire cluster

• 32 x 16KB = 512 KB/sec

• which is not even GigE

• 512 KB/sec is 1/75,000th the bandwidth of the disks.

It is not always this bad

• RAM caches many IOs

• Most directories don’t have 1M+ files

• Even at 10 IOs per objects …

• 192 x 200 / 12 / 10 = 320 GETs/sec

So, this is why MinIO always
benchmarks SSDs.
• Instead of 16 x 12 x 200 IOPS for HDDs, SSDs are 16 x 12 x 500,000

• 38,400 vs 72,000,000 IOPS – 1,800X

• Even so, the IO amplification hurts.

• … and writes are worse.

MinIO x Erasure Codes = IO
Amplification
• GET – 12 x FS-Amp = 120 to 1,800 disk IOs

• PUT – 16 x FS-Amp = 160 to 2,400 disk IOs

• Plus, overhead to track history, do billing, etc.

• We will try to mitigate some of this overhead.

Object Storage and
IO Amplification

Part 2 – A File System for Objects

The Basics of File Systems

• File systems are built on top of “block devices”

• A block device has a particular set of functionality

• Blocks can be read

• Blocks can be written

• Limited control over what happens with caching after a crash

• In addition, the block device can have a set of performance characteristics that
vary from technology to technology.

• Flash SSDs like random reads

• Hard drives like linear IO

• Some devices have restricted write rules

• Zoned SSDs

• HA-SMR / HM-SMR HDDs

All Block Devices Have …

• A size: … ie a 20TB hard disk.

• A fixed number of

fixed sized blocks:

• @ 4K, this is 5 billion blocks.

	 140	 ...	 149

	 	 ...	

	 120	 ...	 129

	 100	 ...	 109

	 150	 ...	 159

	 80	 ...	 89

	 4,999,999,990	 ...	 4,999,999,999

	 110	 ...	 119

	 160	 ...	 169
	 170	 ...	 179

	 90	 ...	 99

	 130	 ...	 139

	 60	 ...	 69
	 70	 ...	 79

	 0	 ...	 9
	 10	 ...	 19
	 20	 ...	 29
	 30	 ...	 39
	 40	 ...	 49
	 50	 ...	 59

20 TB Disk

All Block Devices Have …

• Rules for how writes are handled.

• This is often quite ugly.

• Writes can be re-ordered …

• by the kernel

• by the disk

• Only a single write is guaranteed intact.

• You can control basic caching with …

• Barriers

• Flush

Why Crash Behavior Is Important

• The hardest part of designing a file system is handling data

consistency if the server or drive crashes at an unexpected, arbitrary,

and likely inconvenient time.

• The block device does not help much. Remember …

• Updates can get re-ordered

• Only a single block is guaranteed to get to disk intact.

• Barriers and flush operations are available:

• … but they are often very slow.

File Systems have to do a lot of heavy
lifting to insure data integrity
• File systems need “atomic updates”:

• An atomic update is where multiple blocks are updated such that either they all

make it to media, or none of them do.

• Atomic updates can be implemented with:

• Journals, update randomly, and then update again sequentially.

• Copy on Write semantics where a single block points to a whole new set of

data.

• Generation counters that allow the system, after a crash, to determine which

data is newer.

Atomic updates are the “Ultimate
Design Problem” that all file systems
have to solve.
• Solving this problem:

• … often involves lots of extra IO.

• … often is complicated and convoluted.

• … often is incomplete.

• Some crashes leave the system broken, missing space, or require long FSCK

operations.

• What is needed is a “better” block layer.

Introducing the ESS “Extended”
Block Devices

• ESS is a software-based “block translation layer”.

• Think of it as an FTL in software that uses standard disks.

• ESS already does really neat stuff at the low level.

• This ESS extension gives access to low-level features that just don’t exist at

the stock “struct bio { … }” level.

• Not really a block device, but an “Extended Block Device” (EBD).

Feature 1: Blocks are Sparse

• Blocks have “logical block addresses” which are numbers starting at 1.

• We avoide zero as this makes application design easier.

• There are more block numbers than there is space on the device.

• This is convenient for many allocation schemes.

• Blocks can be available, allocated, or in-use with data.

• The extended block device keeps track of allocations for you so you don’t have to.

• Blocks are designed to be allocated in “binary” sized groups.

• This is similar to Linux page “buddy list” order allocations.

• 1, 2, 4, 8, … 32K blocks can be allocated in a single call

Feature 2: Blocks are Variable Sized

• This is where it starts to get really strange.

• With a conventional block device, all blocks are a fixed size.

• The EBD lets you store anything from zero bytes (an empty block) to

16 Megabytes as a single logical block

• Blocks are space efficient packing data onto the media.

• Blocks are always stored linearly without fragmentation.

• Small and large blocks can be stored on different media types:

• Place small blocks on Flash media.

• Place large blocks on HDD media.

Feature 3: All Updates are Linear

• The update scheme involves 100% linear writes

• Writes are fully compatible with “zoned” devices.

• Zoned SSDs

• HA/HM SMR HDDs

• Linear writes are fast

• Linear writes yield lowest flash wear

• Linear writes can be used with ultra efficient erasure code arrays.

• The linear write logic eliminates in-place read/modify/write operations

Feature 4: All Updates are Densely
Packed

• Updates, in addition to being linear are > 99% “payload”.

• Mapping overhead is well under 1%.

• There are no journals or double copies of data.

• 100% of the write bandwidth is dedicated to actual data.

• Blocks can use compression.

• ... if this makes sense for your data.

• The variable sized nature of FS control blocks makes compression less

needed.

Feature 5: All updates are a part of a
formal atomic update engine

• Multiple blocks can be updated together

• The engine guarantees that either all blocks make it to disk, or none of them do.

• … and the previous contents persist after a crash.

• Update transactions are extensible and mergeable.

• Block allocations are part of the atomic update engine

• Atomic updates can be very long:

• … over a thousand blocks.

• … including gigabytes of data.

Enhanced Block Device Summary

• Variable Sized Blocks

• Sparse allocation

• Atomic updates

• Linear updates at device speed

• Just what a file system needs.

The ESS for Objects File System
WFFS (working title)

• This is where we start to talk about WFFS.

• WFFS sits on top of the EBD.

• Only EBD logical addresses are used.

• no actual disks addresses appear anywhere.

• This lets the block layer do data moves like garbage collection without requiring FS
updates.

• This eliminates the “snowball effect” and “wandering trees” that some log structured file
systems deal with.

• The file system exploits variable sized blocks to support “single IO” file access.

• The file system exploits sparse block allocation to create very compact extent
tables for very large directories and files.

The File System Directory Structure

• Each directory has two header blocks.

• DIR0 is 128 bytes and contains counts,

permissions, timestamps.

• It gets updated frequently, so small is better

• DIR1 is variable sized and contains the group

extent map.

• Minimum is 24 bytes

• 152 bytes supports 64K groups

• 16 Mbytes supports 64B groups

16 8 8 8 8 8 ...

Group
Map
Extents

DIR1:

128

DIR0:
Header

Directory Header Blocks

The File System Directory Structure

• Direct Hash from the filename to a numbered group.

• Avg 32 files per group.

• … groups average 3-12 KB.

16

File 1

File 1

File 1

File 2

File 2

File 2

File 3

File 3

File 3

File n

File n

File n

...

...

...

GRP 0:

GRP 1:

GRP n:

Directory Groups

Resizable Directory Hashing

• Low cost split/merge as files are added/removed:

• … keeps hash balance reasonable.

• Based on a 1980s academic paper.

• … used in PI/Open and OpenQM.

• a “Pick like” database you probably have never heard of.

• Ideally maps to variable sized blocks.

• Single IO to any group.

Variable Sized “File” Entries

• 1-255 byte file name / 0-512 byte payload.

• Fast search by HASH followed by filename compare.

• Filename compare is a memcmp, as the length has already been validated by

the hash.

88

88

1-255

1-255

0-512

0-512

Hdr

Hdr

FileName

FileName

Payload

Extent List

Small File:

Large File:

File Layout inside of Group

Files have “internal” payloads

• Up to 512 bytes:

• … store data internally.

• Over 512 bytes:

• … store the extent table internally.

• The internal extent table support files up to 250TB.

How the EBD mitigates issues with a
hashed / resizable lookup scheme.
• Hashed groups will vary in size

• Variable sized blocks directly map this

• The split/merge operations make the variability worse

• … again, the variable sized block just work.

• Updates require consistent upgrades across several LBAs

• The atomic update engine is ideal for this

• Both directory and file extents need to support both small and huge sets of LBAs

• An exponential allocation scheme is used that exploits the block layers sparse LBAs

• 512 GB files required only 128 bytes for their extent tables.

• Directories can map 1 Billion files with a single 16 Megabyte “extent list block”.

Disk Region Layout

• This FS implementation is designed to work with a combination of

“some Flash” combined with a single large HDD.

• The HDD can be CMR or HA-SMR/HM-SMR

• The Flash can be shared across multiple HDDs using partitions or LVM.

• There are four regions.

• The first three are mirrored between Flash and the HDD.

Region 0:

• The first zone is used in CMR mode for some structures that are

needed during mount.

• This region is write only, except during mount.

Region 1:

• This region comprises 0.2% of the disk and is used as “virtual

memory” to store the LBA “map”.

• Most map structures cache very well, so reads from this region are rare except

for individual files/extents.

• This region is always on Flash, so reads are quite cheap.

Region 2:

• This region comprises 3-10% of the disk and is the primary storage

area.

• It is also where the atomic update engine stored the authoritative

copy of all data.

• All FS structures including directories and small to medium sized file contents

are stored here.

Region 3:

• This is the rest of the disk.

• It is used for large file content and is 100% data payload with no

control information.

• Region 3 runs secondary to the authoritative data region 2.

Worst Case IO Analysis: File Read –
Very Small Files
• … directory is already open

• File < 512 bytes

• 1 LBA read

• 2 flash reads (including map)

• 2 x flash IO latency – 0.4 ms

• XFS HDD baseline

• 31-1000+ ms – 75X +

Worst Case IO Analysis: File Read –
Small Files
• File > 512 bytes < ~256K bytes

• 2 LBA read

• 4 flash reads (including map)

• 4 x flash IO latency – 0.8 ms

• XFS baseline

• 40+ - 1000+ ms – 50X +

Worst Case IO Analysis: File Read –
Large Files
• File > 256K bytes

• 2 LBA read

• 2 flash reads (including map)

• 1 HDD read

• 2 x flash IO latency + 1 x HDD IO latency – 5.4 ms

• XFS baseline

• Small files – 10X

• Very large files – 2X

Worst Case IO Analysis: Directory
Open
• … parent directory is already open

• 1 Small file read

• 2 LBA reads

• reads are concurrent

• map is contiguous

• reads are all Flash

• 5 flash reads

• 4 x flash IO latency – 0.8 ms

• XFS Baseline

• 50 – 1000+ ms – 60X +

IO Concurrency

• Flash IOs can run in parallel.

• with 500,000 IOPS SSD shared among 12 HDDs.

• !40,000 IOPS per drive.

• ~ 20,000 small file reads/sec.

• ~ 10,000 medium file reads/sec (depending on file size).

• ~ 10,000 directory opens/sec.

• HDD IOs are single threaded.

• ~100 large file reads/sec (depending on file size).

• IO BW approaching HDD linear bandwidth.

Impact of Memory

• Map caches very effectively

• Reduces single FILE IO latency to 0.2 ms

• Large files have limited buffering

• Avoids cache churn where large files are read/written.

Very Early Benchmarks
Performance vs XFS
• 25,000,000 files

• Note that 25M files @ 3.5ms per file is 22+ hours

• XFS was slowing down dramatically at large directory sizes.

• Still some queue-depth issues reading groups in parallel.

• Still some locking issues around directory group split/merges.

25,000,000 files File Create File Read

WFFS
4K 5000 / sec 1500 / sec

128K 1400 / sec 350 / sec

XFS
4K 4000 / sec < 30 / sec

128K 285 / sec < 30 / sec

Still a “Prototype”
• WFFS is far from ready for production use

• Early performance numbers are promising and will only get better.

https://WildFire-Storage.com
Doug Dumitru, CTO

doug@wildfire-storage.com
+1 949 291-0184

	Slide 1: Object Storage and IO Amplification
	Slide 2: Object Storage and IO Amplification
	Slide 3: An Example S3 Server – MinIO
	Slide 4: MinIO IO Amplification
	Slide 5: File System IO Amplification
	Slide 6: Total IO Amplification can get really bad.
	Slide 7: Total IO amplification can get really bad.
	Slide 8: It is not always this bad
	Slide 9: So, this is why MinIO always benchmarks SSDs.
	Slide 10: MinIO x Erasure Codes = IO Amplification
	Slide 11: Object Storage and IO Amplification
	Slide 12: The Basics of File Systems
	Slide 13: All Block Devices Have …
	Slide 14: All Block Devices Have …
	Slide 15: Why Crash Behavior Is Important
	Slide 16: File Systems have to do a lot of heavy lifting to insure data integrity
	Slide 17: Atomic updates are the “Ultimate Design Problem” that all file systems have to solve.
	Slide 18: Introducing the ESS “Extended” Block Devices
	Slide 19: Feature 1: Blocks are Sparse
	Slide 20: Feature 2: Blocks are Variable Sized
	Slide 21: Feature 3: All Updates are Linear
	Slide 22: Feature 4: All Updates are Densely Packed
	Slide 23: Feature 5: All updates are a part of a formal atomic update engine
	Slide 24: Enhanced Block Device Summary
	Slide 25: The ESS for Objects File System WFFS (working title)
	Slide 26: The File System Directory Structure
	Slide 27: The File System Directory Structure
	Slide 28: Resizable Directory Hashing
	Slide 29: Variable Sized “File” Entries
	Slide 30: Files have “internal” payloads
	Slide 31: How the EBD mitigates issues with a hashed / resizable lookup scheme.
	Slide 32: Disk Region Layout
	Slide 33: Region 0:
	Slide 34: Region 1:
	Slide 35: Region 2:
	Slide 36: Region 3:
	Slide 37: Worst Case IO Analysis: File Read – Very Small Files
	Slide 38: Worst Case IO Analysis: File Read – Small Files
	Slide 39: Worst Case IO Analysis: File Read – Large Files
	Slide 40: Worst Case IO Analysis: Directory Open
	Slide 41: IO Concurrency
	Slide 42: Impact of Memory
	Slide 43: Very Early Benchmarks Performance vs XFS
	Slide 44: Still a “Prototype”

